Three-dimensional finite strain from crinoid ossicles

Mark G Rowan*

Abstract

Abstraci-Randomly unented cnnond ossicles ate usetul markers lor the determination ol three dimerisonal hrule stam 'Two lechniques are presenled Boith make use ol esablished methods io measure the two dimensional stran ellipses on three surlates, which are then combined to calculate the shape and orientalion ol the stramellipsord Firsi, ossicles positioned such that a thin sectuon culs across the cylinder appear as randomly orienled ellipses prior lo deformation, and can be analyzed using standard R_{4} / ϕ methods Secund, ossiclen posilomed such that the section cuts lengithwise through the cylinder appear as rectangular or sub rectangular thapes with othogonal geometnes in the undelormed state. Measurements of angular shear stratn on iwo or more such markers are analyzed using a non linear least squares solution to the Breddin graph, allowing, deleimination ol the best ha stram ellipse Boith methods are applied ta an echinoderm gatastone from the cenital Helvelic nappes al Switzerland The results are inlemally consistent, and compalible with those hom orher stam analysin lechniques

INTRODUCTION

In his seminal publication on colte deformation in the South Mountain Iold, Cloos (1947, pp. 892-844) sugges ted that cnnoid stems could be used to evaluate and quanlify strain in nalurally delormed rocks He recog nized that crinord disks, or ossicles, ohen are deposited parallel to bedding, and that since the ossicles are initially circular in cross section, the shape and orien tation of the strain ellipse in the bedding plane can be measured directly He also illustrated that ihree dimensional strain can be calculated in favorable cir cumstances, namely when whole cnnuid stems lying within bedding are onented parallel to the principal finte strain axes. In practice, however, these conditions are rarely satisfied, and crinoids generally have been used to quantily only the two dimensional strain within the bedding plane (Hellmers 1455, Breddin 1956a,b, Kurtman 1460, Nissen 1464 , Engelder \& Engelder 1977, Faill 1477, Engelder 1979, Oerlel et al 1989)

Two sources of potential error in the simple twodimensional analysis are related to the assumption of initial circular shape of the ossicles. First, although mosi cmnoid stems are indeed circular in cross section, several species have onginally elliptical profiles (Nissen 1964, Muore \& Teichert 1978, Spratl 1987). Second, even for initially circular ossicles, the technique is applicable only it the disks are truly parallel to bedding; it they are not, the undelormed profile in the bedding plane is ellipical (Engelder \& Engelder 1477, Sprali 1987) In both these cases, the measured ossicle shape and onentation are not those of the strain ellipse, but rather thuse of the combined effect of the initial lorm and the strain ellipse. A related problem was pointed out by Ramsay (1967, pp. 224-230), who demonstrated that

[^0]a cross section perpendicular to the axis of a deformed cylinder generally dues not represent the strain ellipse, as it usually is derived from an oblique, elliptical cut through the undelormed cylinder.

Spratt (1987), in a detailed analysis of deformation mechanisms within crinuidal limestones of the Canadian Rockies, ack nowledged and addressed these problems First, she documented that the ossicles were initially circular by measuring the shapes of relatively unde formed samples. Second, by micruscopically determin ing the umentation of the c axis of each crinoid stem (which forms a single calcite crystal), she was able to calculate and remove the eflects of oblique culs through ossicles, and thus specify both the onginal ellipticity of the cut and the true stratn ellipse. Since this is applicable to ossicles and thin sections of any onentation, her technique allows the three dimensional strain to be calculated, as long as the undeformed cross sectional shapes are known.

In this contribution, two new methods are presented for determining the three-dimensional strain from cr noid ossicles Like the technique ol Sprall (1987), both are applicable to rocks, typically conoidal gratnstones, in which ossicles are randomly oriented. Furthermore, buth methods make use of the two-dimensional shapes created by thin sections culting the three dimensional cylindrical ossicles; these shapes can be evaluated by the standard R_{1} / ϕ (e g. Ramsay 1967, pp. 21)2-211, Dunnel 1964, Lisle 1977) and angular shear strain (Breddin 1456a, Ramsay 1967, pp 236-242) techniques. The three dimensional strain is calculated Irom measure ments of two dimensional strain on three mutually per pendicular sections (Ramsay 1967, pp. 142-147, Siddans 1980) or three or more non perpendicular sections (Owens 1484) Two advantages of these new methods over that developed by Spratl (1987) are that the c axis onentations need not be determined, and knowledge of the original shape of the ossicles is not required.
I

II.

III.
 $\xrightarrow{\longrightarrow}$

IV.

\qquad

v

VI.

Fig, I 'Two dimensomal shapes crealed by thin sections culling unde lormed ennoud ussicles at ditterent angles

THEORY

For each of the two techniques, the rock to be ana lyzed should contain randomly oniented ennord ossicles. The original distrobulion does not have to be perlectly random, as the methods are appropriate whenever ade quale numbers of each of the diflerent cuts (described below) are present in any given thin section. Such a disiribution is easily venfied by visual inspection of each section in a sample, and may be characlenstic of mosi conordal grainstones. Three dimensional strain can sometimes be calculated even when the ossicles are preferentially onented, such as when the conoid disks are parallel to bedding, but only if the two techniques are used in combination and one of the three mutually perpendicular sections is oriented parallel to the orig inally circular cross sections of the ossicles (see later discussion)

Both methods assume strain homogeneily, holh withon individual ossicles and between ditierent ossicles in the same sample Furthermore, if there is equalvolume homogeneous detormation of both ossicles and matrix, the measured strain will be that of the bulk rock delormation; otherwise, it may represent only one component of the total stram

The shape of a crinoid assicle visible in thin section
depends on the relative orientations of the ossicle and the sectoon. It an undeformed circular assicle is con sidered, the tollowing possible shapes resuli (Fig. I) a seclion perpendicular to the cylinder axis produces a circle (cul I); one crossing, the cylinder withoul cutting elther end creates an ellipse (cut II; Figs $2 a \& b$), a section cutting only one end ol the cylinder yields a hall ellipse, or trangular shape (cut III, Fig La), a sectoon culting the cylinder at both ends will, in the generalcase, produce a suh trapezordal geometry, with two straight and parallel sides, and two slightly curved, non parallel sides (cul IV), a lengthwise cul passing close to the center ol the ossicle creates a sub rectangular shape (cul V; Fig, 2b), and a section parallel to the cylinder axis yields a rectangle (cul VI; Fig 2a). The two strain analysis techniques make use of these various shapes produced by the angular relationship between the thon section and the ossicles.

$\mathrm{R}_{\mathrm{d}} / \phi$ method

II the ossicles are randomly onented, cuts I and II (Fig 1) produce a set of initially elliptical markers that are also randomly oriented The tinal axial ralios (R_{1}) and orientations (ϕ^{\prime}) can be measured, and these obpects are thus sutable lor analysis by the many R_{p} / ϕ tech niques that have been developed: e g the onginal method of Ramsay (1967, pp. 202-211) and Dunnet (1464), the modified method of Lisle (1477), the algebrace computation ol Shimamoto \& Ikeda (1476), the onentation net method of De Paor (148K), and others II there is a slight preterential onentation of the ossicles, the techniques presented by Ellooll (147(1) and Dunnel \& Siddans (1471) may be appropriate.

The theories and assumptions underlying the vanous R_{β} / ϕ methods are not addressed here For a discussion ol the relative ments, the statistical validity, and the limi tations of the dillerent techniques, the reader is reterred to the onginal literature

Angular she'ur stram method

The shapes of cuts III, IV, V and VI (Fig. I) contain angular relationships of known perpendiculanty in the undetormed state (Fig. 3) In order to avoid ambigultes, the originally perpendicular lines are shown connecting modpoints of opposite sides, as these orthogonal re latıonships are valid even when marker corners are not perfect nght angles (cuts III, IV and V) Atter delor mation, all markers onented at an angle to the proncipal finite strain directions will be distorted so that the onginally orthogonal lines will no longer be perpendicu lar (Fig, 3). Measurement of the resulting angular shear strain on two or more markers ol dilferent orientations can thus be used to denve graphically the finite strain using either the Breddin graph (Breddin 1956a, Ramsay 1967, pp 236-242, Ramsay \& Huber 1983, pp. 127-149) or the Mohr circle (Ramsay 1467, pp 236-242, Ramsay \& Huber 1483, pp 127-144)

A unique solution is determined when there are only

III

IV.

v

VI

Fig 3 Delormation ol cnmod culs III, IV, V and VI Ongmally orthogonal lines develop angular shear strain
two measurements of angular shear strain (this can also be calculated using the algebraic method of Ding 1984). However, in cases with more than two measurements and non homogeneous deformalion, the data will rarely fall on a single curve, and the best-fit can be difficult to obtain. One approach is to apply a non linear least squares algonthm to the data Rewriting an equation from Ramsay \& Huber (1983, equation 8.5)

$$
\begin{equation*}
\gamma=\left(R^{2}-1\right) \tan (\theta-\beta) /\left(1+R^{2} \tan ^{2}(\theta-\beta)\right) \tag{1}
\end{equation*}
$$

where γ is the shear strain, R is the axial ratio of the strain ellipse, θ is the angle between the shear strain direction and the chosen relerence direction, and β is the angle between the maximum extension direction of the strain ellipse and the reference direction. The orien tation (θ) and angular shear strain $\left.(\psi)=\tan ^{-1} \gamma\right)$ are measured for suilable markers, and equation (1) is solved for R and β using the Levenberg-Marquardi nonlinear least-squares analysis (Press et al. 1988).

Using cuts III and IV (Fig. I) for angular shear strain analysis can yield significant error, as the resulting delormed geometnes may not have been derived Irom onginally orthogonal relationships. Pentacrinus ossicles, etther pentagonal or star shaped, are olten found with normal cylindrical cmnoids, and thin sections cul
a)

c)
\longrightarrow

b)

d)

Fig. 4 'Two dimensional shapes created by thin sections culling unde formed Pentucrinus tragments

Fig \& Plots ul R_{1} vs ψ for samples (a) NLFA' ca and (b) O'T'A 3 ab R_{1} is the maximum initial axial ratio, $R_{\text {, }}$ is the axial ratio ot the strain ellipse, n is the number al whects measured 'The convex upward curve is the R_{1} / ϕ curve dehned by R_{1} and R_{1}, and concave upward curve is the 60% dala curve which divides the dala inlo two equal halves The principal direction $(\phi=0)$ is the R_{i} werghted vector mean ol marker onentations
ling through an arm of an undetormed star shaped Pentacriniss, lor example, can produce shapes that are similar lo cuts III and IV (Fig. 4). These show an apparent angular shear stramn (Figs. 4c \& d), yet have undergone no deformation. Thus, strain analysis by the angular shear strain method should be confined to the sub-rectangular and rectangular shapes of cuts V and VI (Fig 1), for which opposite sides are of the same length.

Another approach is possible using cuts V and $V I$, but has not been applied here Roder (1477) has shown that

「allin I Numeler ol measured abjer

Sampla	All whers Fiy	O-nioud,		$\begin{gathered} \text { Preller } \\ K_{1} / \psi, \end{gathered}$
		$F_{1} / 4$	Shear vian	
NLEI	200, 11.122	14, 51, 31	1,4, 1	40, (1), 4
NLE:	! $4.4,211,21 ?$	-14, 34,411	6,4,4	72,01,74
NLFA:	: $14,216,2 \leq\}$	23, ${ }^{4}, 30$	4,7,4	81,74,43
UTVA?	2 $24.144,2107$	26,21,11	7,6,7	42,44, it
OTE	2106, 215,201	23,44, ${ }^{2}$	84,7	45,4ヶ, 7:
OTA	184, 217,2114	26, 31, 38	6, י, 4	11,44,41

Nole Vialues are marker pupulalionsinearh alithereperpendialar serlions.
a unique ellipse can be inscribed within a paralle logram, so that these culs may also be suitable for R_{1} / ψ analysis One potential problem is crealed when undeformed ussicles have either high or luw height 10 dameter ratios, and thus minimum mitial axial ratios (R_{1}) substantially greater than 10 In these cases, a preterential original onentation of the markers may result in the calculation of excessively high stram ratios

Fig, to Determination of the strain ellipse as a function ol number ol objects measured lor the standard R_{1} / ϕ method (a) axial ialio $\left(R_{1}\right)$, (b) unentation ol long axis (H^{\prime}) Squares are mean values, bars represent one standard devialion

APPLICATION

The iwosiran analysis methods described above have heen appled 10 six samples from the central Helvetic nappes al Switzerland. The samples are from the Eichinoderm Member of the Middle Jurassic (Dogger) Hochstollen Formation and are situated on overturned tolds of the Wildhorn Nappe in the area around the Faulhorn in the Berner Oberland between Grandelwald and Interlaken (see Rowan \& Kligield in press) The rock is a tine to very course gratned echinoderm gram stone, dominated by crinoid ossicles and other echino derm firagments, with minor amounts ol predominantly micnic pellets and rare quartz grams, and cemented by a sparry calcote (Fig, 2) Crinod ussicles are single crystals of calcile, and the spar cement is in optical conlinuily with the grams ($\mathrm{Fig}_{\mathrm{g}}$ 2b) The samples have no, visible matrix and thus no grain matnx competency contrast (although the pellets form low competency inclusions) The measured strams are, therefore, assumed to approximate the bulk rock strain attribu table to deformation mechanisms other than solution cleavage and dilatant veins spaced wider than the grain diameters

In the sections below, the results of the two methods are presented, with specific relerence to individual two dimensional cuts through two different samples The examples have been chosen 10 illustrate the range ol results ohtaned from relatively gond data (sample NLFA2.ca) to relatively poor data (sample OTA3.ah). The calculated three dimensional strans trom all six samples are then presented and compared toeach other, as well as to those derived from R_{f} / ϕ analysis of the micritic pellets and all obbect Firy analysis (Fry 1474)

$\mathrm{R}_{1} /$ ¢ methods

Oif the numerous variatons of R_{1} / ϕ analysis available, three were chosen lor application to the elliptical crinond cuts the onginal method of Ramsay (1967, pp. 202-211) and Dunnet ($199^{4} 9$), the unstraining ('iheta curve') lech nique of Liste (1477), and the algehrace computation ol Shimamoto \& Ikeda (1976)
'The results of the original R_{1} / ϕ method are illustrated in Fig. 5 Subjective best fit $R, / R$, curves lor sample NL.FA2 ©a (Fig. 5a) are lightly constrained, whereas those lor sample OTA 3 ab (Fig 5b) are less well de hned Both samples show symmetrical distributions of data points in the lour curve quadrants, suggesting that the assumption ot orignal random distrobution is valid (Dunnel \& Siddans 1471) Each is charactenzed hy wide fluctuation ($1500^{\prime \prime}$ and $155^{\prime \prime}$), high maximum initial elliplı attes (17 and 19), and low lectonic strains (12 and 112); these values are representative of the sulte of is analyzed sections. The Lisle (1477) unstraming and Shımamoto \& Ikeda (147h) numerical methods pro duced almost identical results (see Table 2)

For elliptical crinond cuts, the maximum initial axial ratio $\left(R_{1}\right)$ is a lunction of the height to diameter ration of the cmnoidal columnals, and is produced by a thin
sechon culling diagonally trom one corner of the disk to the apposile corner (steepesi pusuble ellipse at type II, Fig 1) For crinods of height h and diameter d

$$
\begin{equation*}
R_{1}=\left(d^{2}+n^{2}\right)^{1 / 2} / d \tag{2}
\end{equation*}
$$

Sprall (1487, pp. 45-47) measured the dimensions of 50 undeformed ossolcles trom North America and Europe, and delermined a maximum height do diameter ratio of 11451 , corresponding loa maximum R_{1} ot only I I Yel the maximum R_{1} values determined by the R_{1} / ϕ unalyses of the Wildhorn Nappe conoids range from 17 102 4 , with a mean of 2 I. This discrepancy can be resolved hy measuring the reclangular (type VI) cuts visible in the thin sections. Ot the many such cuts, It were lound that cut along the length of the axial canal and thus show the true cross sectional shape of the ossicles ('r' in Fig 2a) The herght to diameter ratios measured for these ohjects have a mean ol $\mid 8$ and a maximum ot 21 , con sistent with the results of the R_{1} / ϕ analyses As ossicle dimensions vary between diflerent crinold species, those measured by Spratl (1487) are not representative of the spectes lound in the Wilhorn Nappe samples

In applying R_{1} / ϕ techniques to crinoid ossicles, il is importunt that enough objects he measured to give statistically meaningtul results Because ol the size of the markers (generally $1-2 \mathrm{~mm}$ in diameter) and the low proportion ol elliptical culs within a given rock volume, large format thin sections ($5 \times 7.5 \mathrm{~cm}$) were used and are recommended In the samples analyzed, the number of objects measured ranged from a low ol 21 to a high of 54 (T'able I). In order to test the statistical consistency of the results presented here, the $R_{f} \phi$ method was applied to different subsets of the total data set from a sample with 38 elliptical cuts five sets of eight markers, five sets
of 14 markers, four sets of 14 markers, three sels of 28 markers and one sel consmsting ol all 38 objects The resulting mean values and standard deviations of the stram ellipse magnitude (R_{r}) and ontentatom $\left(H^{\prime}\right)$ are plotted in Figs $h(a) \mathbb{d}(h)$, respectively The graphs suggest that tor marker population sizes ot over 20 whects, the strain ellipse magnitude can be determined withon ± 0026, and its orientation within $\pm 10^{\prime \prime}$, for marker populations of over 30 objects, the correspond ing values are $\pm 0\left(115\right.$ and $\pm 7^{\prime \prime}$ As the stram magnitude is 117 tor this sample, the potential errors are probably greater at lower measured strams

Angular she'ar stran merhod

Even using, large format thin sections, rectangular and sub rectangular crinoid culs suitable for angular shear stran analysis are rare, ranging from three to eught per sample ('Table 1) This is partially due to the large height to diameter ratios in the Helvetic nappe crinoids; species with the dimensions measured by Spratl (1987) would have higher proportions of these cuts The low numbers are also due to the elimination of any objects with upposite sides of unequal lenglh: although these may be otherwise appropmate markers that have undergone slight non homogeneous deformation, they may also represent cuts through Pentacrintes ossicles with onginal non orthogonal geometnes, and are thus sus pect

Figure 7 shows the results Irom the same two samples used to illusirate the $R_{p}(\phi)$ analysis, plotted on Breddin graphs of angular shear strain (1) vs marker orientation (ϕ^{\prime}) Again, sample NLFA2 c'a (Fig, 7a) is lightly con stramed for determinatun of both stram ellipse magni

Fig 7 Breddon plossol angular shear stram (ψ) vs onentation (ϕ ') lor samples (a) NLFA: ca and (h) O'T'A 3 ab R is the
 algonihm

Fig X Normalized (Erslev IU8K) center Iotenter Fiy plots lor samples (a) NLFA: (a and (h) OTA 1 ab The shape and onentalon of the insenbed strain ellipses were delermined subpectively n is number ol ubjects,
lude and anemiation, whereas sample OTA3.ab (Fig. 7b) shows considerable scaller of data around the best fit curve. The imporance of the non linear least squares analysis of more than two markers is evident it the data from Fig 7 are examined. matching a curve to only two markers (Breddın 1456a, Ramsay 1467, pp. 236-238, Ramsay \& Huber 1483, pp 127-144, Ding 1984) would yield widely discrepant results depending on which markers were selected. The scatter is mosi likely due to stram heterogenelties at the scale al the thin section

Other methods

Two other strain analysis techniques were applied to the six samples for comparison with the results of the crinuid methods. First, the micrilic pellets were analyzed by the same three R_{ℓ} / ϕ techniques 'These markers are more abundant than the elliptical crinord cuts, ranging trom 311090 in the different samples (Table 1) The results were very similar to those denved from the
R_{1} / ϕ analysis of the crinoids, though strain magnitudes were generally higher (see discussion below)

The second technique was the center tocenter method (Firy 1474), modified by the normalization pro cedure of Erstev (IU88) All combilluent uhfects of the samples were used, including, the various crinoid shapes, wher echinoderm Iragments, quartz grams and pellets, with sample sizes ranging from 18410250 (Table 1) The results from the same two samples used to illustrate the crinoid methods are shown in Figg 8 , and again depict relalively good (Fig Xa) and relatively poor (Fig , Xb) datu

Thre'e' dime'nstomal strann

For each sample analyzed, and tor each of the strain analysis methods, the results trom three perpendicular sections were combined to generate the shape and onentation of the finte stran ellipsord (Table 2) using the method of Owens (1984) As the results are ditficult to evaluate in tabular torm, the orientations of the principal axes of the strain ellipsold are plotled on lower hemisphere, equal area nets (Fig. 4), and the shapes of the ellipsords are illustrated in a standard Flinn graph (Flinn 1962) (Fig. 10).

The onentations of the principal axes calculated from the difterent markers and the diflerent two dimensional analyses are generally consistent (Fig 4) 'There are Iwo types of inconsistencies in the results the first is simply scatter in the plotted positions of the axes, and the second is a switch ol the X and Y axes for one analysis in lour of the samples (NLBI, NLB2, NLFA2 and OTB). However, no systematic variation is apparent in that no one strain analysis method shows regular departures from the mean onentations, and the inconsistencies theretore are due probably to the inherent ditficulties in determining accurately the magnitudes and orientations of the strain ellipse in samples with low strain.

The Flinn graph (Fig (I)) depicts the shapes and magnitude rallos of the strain ellipsoids, with most talling in the held of apparent flattening (Ramsay $\&$ Wood 1973) In contrast to the orrentation data, the magnitude data show a systematic variation depending on the strain analysis method utilzed The R_{p} / ϕ and angular shear strain analyses of the cmord ossicles record the lowest strams, with relatively low values of $R_{1,}$ and $R_{y ;}$, while the R_{1} / ϕ analyss of the pellets and the Fry analysis show intermediate and relatively high values, respectively The pellets may have undergone greater deformation than the crinords because of the lower competence of the micntic grains compared to the single crystal ossicles 'The Firy analysis results are highest because the effects of gram to grain pressure solution were purposefully avoided in the shape analysis techniques by reconsiructing and dıgitizing the uncor roded perimeters of the grams As the micro scale bulk deformation is a product of the crystal plasticity, grain to gram pressure solution, and any gran boundary sliding, the shape analysis methods may, theretore, approximate the intracrystalline component ol the finite
Table 2 Calculated strann ellipsoids

Sample	Axus ${ }^{-}$	All objects Fry		Cnnoids									Pellets					
				$R_{r}{ }^{\prime} \varphi$		Theta		Algebraic		Breddın			$R^{\prime}{ }^{\prime}$ \＄		Theta		Aigebralc	
		Mag	Orient	Mag．	Orient	Mag	Onent	Mag	Onent	Mag	Onent	Corr \dagger	Mag	Onent	Mag	Onent	Mag	Onent
NLbl	\boldsymbol{X}	112	04.259	1．12	17.058	114	16.058	109	11.055	119	34.338	061	11^{7}	10.052	1.18	09.051	115	00.051
	\boldsymbol{Y}	098	17.168	097	T． 3.36	0.98	09.325	099	08.323	099	01.247	086	099	01．322	101	01321	10	013．321
	Z	084	72．003	092	72.216	089	71.206	002	74.205	085	56.155	066	086	80.228	084	81.227	085	81.214
NLF32	\boldsymbol{x}	1.18	27.241	113	06.353	111	08.349	111	05.345	1.19	05.026	062	120	26.298	119	21191	117	26.219
	\boldsymbol{Y}	103	04.332	1.01	19.261	101	19.256	101	18.253	101	40.291	087	106	07.321	104	21.292	1 旦	11.314
	Z	O） 82	62.069	088	70.100	090	69.101	0.89	71.091	0.83	50.121	0.93	079	63.065	（1） 81	60063	081	61.665
OTVå	\boldsymbol{x}	128	15.216	130	42．247	1.23	13.248	117	36.248	112	33.244	$\bigcirc 56$	130	11，245	121	47．241	127	27．212
	Y	104	73077	110	47.057	112	47.059	112	51.060	103	57.068	099	105	48.078	110	43.008	106	22.078
	z	075	03337	070	05.153	072	05.153	076	${ }^{104} 155$	087	0.335	078	073	07.311	$\bigcirc 75$	677．312	$0{ }^{\square 1}$	
OTB	\boldsymbol{X}	124	17.119	111	40.148	110	11.154	108	${ }^{31} .134$	108	06.045	080	112	53.113	109	52.12	110	${ }^{515} 141$
	\boldsymbol{r}	097	42.225	10	$\underline{0} .057$	102	O4．060	101	06.228	102	32.138	078	105	00.02	10	06.05	1 易	13685
	Z	083	43.012	089	51.375	0 O 9	49.326	992	56.327	091	57.305	089	$\bigcirc 85$	37.289	087	38.99	¢ $\overline{\underline{x} 7}$	$3 \mathrm{x} .20 \mathrm{O}, 1$
OTa 3	\boldsymbol{X}	114	01.251	112	00.076	113	02.077	110	00.257	107	14，090	062	114	17.235	115	19.238	115	1123
	Y	10	71.157	1.01	68，167	101	65.170	100	63.165	10	16195	080	100	62.109	$\bigcirc 99$	62.100	¢57	＋1．12区
	Z	086	10.341	（1） 8 区	22.346	${ }^{11} 87$	25.346	O1 91	27346	1992	49.348	052	088	21.332	087	20.335	O00	12 $32=$
NLE？	\boldsymbol{X}	115	15.174			106	06.240			112	06．241	083			111	0.5026		
	\mathbf{Y}	105	12.			101	48.144			－199	30.148	0774			106	03.136		
	Z	082	71.314			093	41．335			090	59.342	$\bigcirc 77$			0 E 5	85.018		

[^1]

Fig 4 Lower hemisphere, equal area propections of the pnocipal axes ol the calculated strain ellipsords X-long, axis, Y-intermediale axis, Z-short axis For each sample, bedding is shown by the greal circle, and the local fold axis by the solid square
stram, whereas the Fry analysis may record the total finite strain due to bolh crystal plasticity and gratn to grain pressure solution 'The Firy analysis thus is a better indication of the bulk reck strain

DISCUSSION

The methods presented in this paper are simple exten soons of well established stran analysis techniques When applied to crinoid ussicles from the Wildhorn Nappe, the methods produce results that are internally consistent and compatible with those Irom other siratn analysis techniques The significant scatter and probable error ranges of the calculated strain ellipsoids are elfects of the low strams in these samples, and would presum ably be reduced at higher stran states

Although the techniques as described are applicable to rocks in which the cnnoid ossicles are approximately randomly oriented, so that the different cuts of Fig. 1 are present in any thin section, the methods can be com bined to measure three dimensional finite strain when the ossicles are preferentially onented For example, it the crinod disks lie approximately parallel to bedding (c axes or thogonal to bedding), three perpendicular thin sections should be cut so that one is parallel to bedding. The iwo-dimensional strain in this section is measured using R_{1} / ϕ analysis of the circular and ellipical culs, and the other two sections, both oriented roughly parallel to the cylinder axes, are analyzed with the angular shear strain method on the rectanglar and sub rectangular cuts The results from the three sections are then com bined as usual to calculate the finite stran ellipsoid. This technique will not work if the ossicles are all oriented identically, as the angular shear stram analysis will yield

Fig 10 Flinn (1462) plot ol stran ellipsoid shapes for each sample and stian analysis method $R_{n \prime \prime}$ is the ratio of \mathbf{N}^{\prime} to V^{\prime}
 and upparent constriction (lett)
only one poinl on the Breddin graph, some variation in orientation is required As the spread in orientations increases, the uccuracy of the Breddin graph curve fitting also increases

The methods described here have several advantages over the three dimensional technique developed by Sprall (1987). First, knowledge of the original shape of the ossicles, $1 e$ whether they had circular or elliptical cross-sections, is not required. The R_{f} / ϕ analysis is applicable in either case. Second, the orientations of the ossicle c axes do not need to be determined in order to remove the effects of oblique cuts through the crinord disks. Third, the flat-sluge technique for determining the c-axis orientations (Sprall 1987, pp. 48-57) is ambiguous for ossicles with large height to diameter ratios. Spratl showed that the c-axis cannot be determined uniquely if it is inclined belween $26^{\prime \prime}$ and $64^{\prime \prime}$ in the pole of the thin section, and that since the elliptical cuts in her samples are always inclined at an angle of less than 24°, the method is useful However, Ior ossicles with height to-diameter ratos greater than 0.5:1, the c axis onen lations cannot be determined unambiguously In the case of the Wildhorn Nappe samples, the elliplical cuts may have c axes inclined up $1065^{\prime \prime}$ from the pole of the thin section, and the fial-stage technique is unusable. The $R_{f} \phi \phi$ and angular shear strain methods, on the other hand, are nol bound by any ol these restrictions, and can be applied easily to a wide range ol crinord-bearing rocks.

Acknowledgements-R Klogheid is thanked lor providing the oppos lunily io work in the Helvelic nappes, and R Rallit loi hrsi suggeslimg the analyfical Breddin graph solulion Both also made helphul com ments on the manuscripl, as did G Oertel, P Hudleston, and an anonymous reviewer Sirain analyses were carmed oul in the Siran Analysis Murocomputer Lahoratory at the Universmy ol Coloradn, Boulder. Several programs are based on sothware unginally designed by Roberis \& Siddans (1971) and Peach \& Lisle (1474) The research was supported by NSF gatal EAR 8t, Iftedll Io R Kligfield

REFERENCES

Breddin, H 194na Die tektonische delormation der lossilien im Rhemische Schaelergebirge $Z \mathrm{dt}$ geal Ge's 106, 227-705
Breddin, H 14hth Tektomische Giesleindelormation im Karbongui rel Wesideulschlands und Sudlimhurgs Z di genl Ges 107, 212260
Cloos, E 1447 Oolite delormalion in the South Mountan lold, Maryland Bull geol Soc 4 m 58, 84 K-418
De Paor, D. G $1488 R_{R} / \phi_{1}$ stratn analysis using an onentation net J Struct Geol 10, 12k-3?
Ding, Z Y 1484 Some tormulae for calculaling parameters of the strain ellipse Tectonuphusics 110, 167-179
 parlicles Téctornophisas 7, 117-136,
Dunnel, [) \& Siddans, A W B. 1471 Non random sedimentiar

Elloul, [) 1470 Detriminalom ol finite sitain and inilial shape form delomied elliplical ohpects Bill gerol Sor Ani 81, 2221-223t
Engelder, 'T' 1474 Mechanisms lor strain within the Upper Devorian clastil sequence at the Appalathan Plateau, western New York Am J Scr 279, L27-442
Engelder, 'T' Engelder, R 1977 Forsal disarion and decollement tectonics of the Appalachian Plateau Geologis 5, 447-4on
Erslev, E A lusk Normalized center lis center utran analysis of packed aggregates. I Struct Geol 10, 201-204
Faill, R 'T' 1977 Fossil distomion, Valley and Radge Province, Pennsylvania Gecol Soc Am Ahs w Prog 9, 262-263
Finn, [1462 On folding dunng three dimensional propressive delormatoon \& J geol Sior Lond 135, 241-305
Firy, N 1474 Randum point disinbutions and strain measurement in rocks Tectonophisics 60, 84-10s
Hellmers, H 1955 Crinoidensitielglieder als indikatoren der Gestein delurmalion. Geol Rdsih 44, 87-42
Kuilman, F $14(1)$ Fussildelormation und T'eklonik im nordichen Rheınischen Sichuelergeburge Geol Rdsch 49, 434-444
Lisle, R.J 1477 Estimation ol the lecionic sitain ratios hom the mean shape of delormed elliplical markers Geol Minhoun' 56, 140-144
Minore, R C' \& 'Teichert, C (editors) 1978 Treatase on Invertebrate Pale'rintologv, F'art T', Echinodermata Geol Soc Am, Boulder, Colorado, and Universly ol Kansas Press
Nissen, H U 14ta Dynamic and kinemalic analysis of detormed conold hlems in a quarlz graywacke J Geol 72, 34h-1 FH .
Oerlel, O , Engelder, T' \& Evans, K 1484. A companson ol the stran of ctinoid columnals with that of their enclosing silty and shaly matrix on the Appalachan Plateau, New York I Struct Geol II, 475-443
Owens, W. H. 1484 The calculatun of the best ht ellipsiond from ellipisal sections on arhitianly onented planes I Struct Geol 6, 571-578
Peach, C J \& Liske, R J 1479) A Foritan IV program for the analysis ol leclonic strain using delormed elliplical markers Comp Geosit 5. 124-314

Press, W H , Flannery, B P, Teukolsky, S A \& Velterling, W 'T'. I488 Numencal Recipes in C" Cambndge Universily Piess, Cam hndge
Ramsay, J G 14h7 Folding and Fracturing al Rocks McGraw Hill, New Yurk
Ramsay, J (\mathbf{J} \& Huber, M I 148, The Terchnque's of Modern Struc'riral Grologiv. Volume' I Sitran Analysis Academic Press, London
Ramsay, J G \& Wood, D S 1973 The peomelnceftects ol volume change dunng deformatum processes 'Téctonophysics 16, 262-277
Robents, B Siddans, A W B 1471 Fabric studies in the Llwyd Mawi Ignimbnite, North Wales Tectonophysirs 12, 28t Mo
Ruder, Gi H 1477 Adaptulion ol pulygonal staam markers Tectono phusics 43, 'T'1-T10
Rowan, M G \& Kligheld, R In press Kinemalics of large scale asymmetric huckle lolds in overthrust shear an example from the Helvelic nappes In Thrusi Tectonics (ediled by McClay, K) Unwin Hyman, London
Shımamolo, 'T' \& Ikeda, Y 1476 A smple algehrac meihod for strain estimation Irom deformed ellipsoridal objects I Basic theory Tectonophysics 36, 315-337
Siddans, A W B 1480 Analysis of thiee dimensional, homogene ous, hnute strain using, ellipsordal objects Tectonophusics 64, I-It
Sprall, D A 14 ${ }^{2} 7$ Finile slian and delormation mechanisms in carbonate thrust sheets Unpublished Ph D) Ihesis, Johns Hupkins University

[^0]: *Piesent address. Alasturr Beach Assomates, II Royal Exchange Square, Olasgow Gi AAJ, ll K

[^1]: of Lisle 110^{77} ，Aigebranc－methed of Shimamete di Ikeda i 1976）．Breddın－angular shear strain methed Onentatien is glven as plunge and trend．in degrees
 －Correiatuen coeffictents of the three tue－dimensional sectiens inet ellıpsold axesidetermined by the non－linear leäst－squares curce fitung

